Support Vector Machine based Hybrid Classifiers and Rule Extraction thereof: Application to Bankruptcy Prediction in Banks
نویسنده
چکیده
Support vector machines (SVMs) have proved to be a good alternative compared to other machine learning techniques specifically for classification problems. However just like artificial neural networks (ANN), SVMs are also black box in nature because of its inability to explain the knowledge learnt in the process of training, which is very crucial in some applications like medical diagnosis, security and bankruptcy prediction etc. In this chapter a novel hybrid approach for fuzzy rule extraction based on SVM is proposed. This approach handles rule-extraction as a learning task, which proceeds in two major steps. In the first step the authors use labeled training patterns to build an SVM model, which in turn yields the support vectors. In the second step extracted support vectors are used as input patterns to fuzzy rule based systems (FRBS) to generate fuzzy “if-then” rules. To study the effectiveness and validity of the extracted fuzzy rules, the hybrid SVM+FRBS is compared with other classification techniques like decision tree (DT), radial basis function network (RBF) and adaptive network based fuzzy inference system. To illustrate the effectiveness of the hybrid developed, the authors applied it to solve a bank bankruptcy prediction problem. The dataset used pertain to Spanish, Turkish and US banks. The quality of the extracted fuzzy rules is evaluated in terms of fidelity, coverage and comprehensibility. DOI: 10.4018/978-1-60566-766-9.ch019
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملThe Application of Least Square Support Vector Machine as a Mathematical Algorithm for Diagnosing Drilling Effectivity in Shaly Formations
The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to develop a model to diagnose drilling effectivity. Hence, we arrived at graphical cor...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملدستهبندی پرسشها با استفاده از ترکیب دستهبندها
Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The literature works can be categorized as rule-based and learning...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016